skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmad Mudassar, Burhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Three-dimensional (3D)-stacked memories, such as the Hybrid Memory Cube (HMC), provide a promising solution for overcoming the bandwidth wall between processors and memory by integrating memory and logic dies in a single stack. Such memories also utilize a network-on-chip (NoC) to connect their internal structural elements and to enable scalability. This novel usage of NoCs enables numerous benefits such as high bandwidth and memory-level parallelism and creates future possibilities for efficient processing-in-memory techniques. However, the implications of such NoC integration on the performance characteristics of 3D-stacked memories in terms of memory access latency and bandwidth have not been fully explored. This paper addresses this knowledge gap (i) by characterizing an HMC prototype using Micron's AC-510 accelerator board and by revealing its access latency and bandwidth behaviors; and (ii) by investigating the implications of such behaviors on system- and software-level designs. Compared to traditional DDR-based memories, our examinations reveal the performance impacts of NoCs for current and future 3D-stacked memories and demonstrate how the packet-based protocol, internal queuing characteristics, traffic conditions, and other unique features of the HMC affects the performance of applications. 
    more » « less